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Thisz Yook has been prepared far 5 one-somester besle coursze iz
elemertary statisbtical analysis which, at FPrincston, iz the introductory
equrse for all fieids of statistical spplication, and is usually taken in
the freshman ysar. It is espscially designed for Those who inlend To go i~
to tae biolopical and social scievess, I presuppoeses cne semester of sle-
mextary watkemubical analysis covering tSopies such zs those included in the
first half of F. L. Griffir's Introduction to Mathematical Aralbs_m..\?he
material nas heen developed from Lwe years of sxperience With such s\BOUrs6.

\

an effort has been made Shroughout the book to amphas:ée ths role
playsd in staSistical analysis by a sample of MEendulenents agd\a Topulation
from whick the sampie is suppossd to have arisen. Only thnﬂc'chapters are Ge-
ed to elementary descripiive statistics of a samplc of'ﬁéa suremsnts. Io
thcse three chapters the ides of a population is nres raqé on a purely intual-
tive basis. Frobability concepts are Then introducgly iz makes i% pessibvle
to use thesc basic concopts at au early giage in dealing mecre criticaiiy with
the fdea of a Lopdlatlon and sampling from a popubQ don. Ceonsidorable atten-
tion is given Lo the apolication of samnling pr3601plvb to the simpier problems
of siatisticel infererce such as determiningBomiidence limits of population
means and diffesrence of means, meking elemonbdry significarce beats, testing
Por rendomness, eto. No atbenpt has boen fads hore fin fames, there is mot
enough time Iln one somester! ] to ge lan Wnelivsis of variance and more sophisa-
ticuted problems of sltatisbical infexs S'%e, An elementary treatment of analysis
of pairs of mesasurcments includiag Ieast squares netacds iz presented. Boscial
effort nas becn wade throughout ks book to keep the mathemstics elementery and
Lo state speciflealily at nn;c@{ﬁbints the mathematics ia Loo advanced Lo pre-
ent .,

Tke COLTSE T e ‘= material has ween used has boon conducted

satisfactorily (not 1d@a'1y ] without the use of & compubing laboratory. The
problams in uhe chroxqﬂs have heen sclected so Ukat comuwubations cun be car-
ried cut effectivg®y by the uas of a smail handhcok of Lakles such as

C. D Hodgman’so\f'thcmatioal Tables from Handoook of Chemistry and Poyaics.
& S
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CHAPTHER 1, INTRODICTION

1.1 (eneral Remaris.

To many persons the word statistics means neatly arranged tablss of
figures and bar charts printed in finsncial sections of newsoapsrs or issued by
almanac publishers and government agencizs. They have the impressiog™taat sta-
tistics are figures used by persons called statisticians to provesgr.'disprove
gomething. There is plenty of ground for this imzression, Arqrs{n\e “whe tries to
make sense out of a set of chservational or experimental d@té&iﬁ assuming the
role of a statisticien, no matter whether he is a buainasétexécutive, 2 medical
research man, & biclogist, & public opinion poller orNah'economist, Some sets
of data are very simple and the implications and Fqgflusions inherent in the
data are obvlous. Other data, however, are cquéex and may trick and confuse
the statisticsl novice, even though he may betaﬁ expert in the subject matter
field from which the date came. The only3@p§ to reduce this confusion is through
scientific methods of collscting, analyéiﬁg and interpreting data, Such metheods
have been developed and ars availabléi’ The fac% that expert statisticians well-
versed in these methods can anéég;come out with sound coaclusions from a given
set of data which differ ve y&?i%tle from one statistician to another is evidence
that there are no rsal grounds for the naive ¢laim that statistics can prove
anything, Some of thg most dangercusly decepbive uses of statisties oceur in
situations where ﬂorfﬁct conzlusions are drawn and which seom to depend on the
statistics, Mhentﬁp fact, the statistics hawve 1littls if anything to do with the
original quSv+On. fihile mathematica camnot protect a person from this danger
dlrectly,\famlllarltv with mmerical analysis will maks 1% sasier to spot such
hidden E\ilac1es.

Modern statistical msthed is & science in itself, dealing with such
questions as; How shall a program of cbtaining data be planhed so that reilable
conclusions can be mads from the data? Hew shall the dats be analyzed? Wnab
aonclusions are we entitled to draw from the data? How relisble are the ocon~
clusions? To try to present all the statistical methods that are known and
used at presant would be an encyclopaedic venturs which would lead us deeply

into stetistical theory and many subject matter fields., However, thers 1s a

1



2 1. INTRODUCTION Sec. 1.2

body of fundemental concepts and elementary methods which can be presembed in
a beginning course. The purpose of this course is to do just thias, and %o il-
lustrate the concepts and methods on simple examples and problems from various
Pields.

You will ask at this juncture what kinds of sibtuations come up which
involve these fundemental concepts and elemeutary methods. Series or sets of
raw statistical observations or measurements arise in many ways and in many
different fields. The number of cbservabions or measurements needed or fuezible
varies tremendously from one situation $o another. In some cases, dg Nin reace-
time firing of large celiber naval guns, only a very smell SM‘ELQ:QE MEeRE Jrement
{of where the shells actually fall) can be obtained because oi\’:kos’t, In cther
cages, as for example in a Gallﬁp pell for a prasidsntia% (cﬁi:é.ction, the number
of cbservations runs into the thousands. In some Sit%?{i::ins the sample compriss
the entire populelion of measurements or observatioms\which could be made, PRI -
ticularly in census-type work where complete engm%rétions of populations are
made. Federal and state govermment agencies Qa%ﬂd‘hationa_\l associations caompiie
data on entire populations of objects, s, g.ﬁ,‘ Yirths, deaths, automobilc registrs
tions, number of life insurance pollcle{s, Yeto, . atc.

Theres are two general t‘;pes*of‘ statistical observetions: (1) guanti-

tative and (2) qualitative. We shall discuss these separately.

1.2 Quantitative Statistical™ abs ervations,

By quantitative %t\atistical observations we mean & seguence cr set of
nunerical mea.surement& 50t/ observetions made on some or all of the objects in a
specified ponulatu.Ql of‘ objects. If the observations are made on some of the

objects we callsblie’ set of observakions a ample, Let us illustrate by soms
examples, '(\ :

Suppose & men's clothing store proprietor writes down from salss s1ips
the 1zas of men's overconts soid every other week for September and Ootobor. I
would end up with a list of mumbers that might run something like this;

36, 42,
44, 30, 40, 38,

s+ 8and 8o on for 145 mmbers, The list of nunbers vritten dows

congtitutes a sample of sizes from tha population of overcoats he has sold dur-
ing September and October,

By making an analysis of a series of specimens from & certain deposit

of ore, for percent of iron, a chemist might turn up with 1 messurement on each

of five specimens something like this, 28 ¢, 27.8, 29.%, 28.2, 30.1. This is
> oy vy w-ls



2 1. INTRODUCTION Sec, 1.2

body of fundamentul corcepts and elementary methods which can be pregented in
a beginning course. The purpose of this course is to do just this, and to 13-
lustrate the concepts and methods on simple exsmples and problems frem various
fields. '

You will ask at this juncture what kinds of situations como wup which
invelve these fundamental coneepts and elementary methods, Series or sots of
raw statistical observations or measuremerts arise in many ways and in manRy
different fields. The mumber of observations or measurements needed\pr fsasible
varies tremendously from one situation to another., In some CRE83, ®: in peace-
time firing of large caliber naval Funs, only & very small sgméféfbf measuremants
(of where the shells actually fall} can be obtained becausgon cost, In olbher
cases, as for example in a Gallup poll for a presidentiaifei%ction, the number

Ky
of observations runs into the thousands. In some situ@tzons the sample comprises
the entire populetion of measurements or observatio§s ﬁhich could be mads, par-
ticularly in census-type work where completo enn@}rhtions of populations ars
made, Federal and state govermment agencisq~§;h national essociations compile
date on entire populations of objects, sgg.;"Eirths, deatis, nutomobile registra-
tions, number of life insurancs policiegé'étc., stc,

There are two gensral typgéﬁbf statistical observations, (i} quanti-

tative and {2) Qualitative, We glall discuss these separately,
N\

1.2 GRuanbtitatbive Statisticak‘@ﬁservations.

By quantitative'ﬁﬁatistical cbservations we mean a sequence or seb of
mmerical measurementgQdf'Bbservations made on some or all of the objests in s
specified population?ﬁf‘objects. If the observations are made on some of Lhe
objects we call b@§>éét of' observations a sample, Let us illusfrate by some
examples. . : O

m§uﬁiése a men's clothing storas proprietor writes down from sales slips
the sizeé\a} mer's overcoats sold every other week for September and Octoher., He
would end up with & list of mmbers that might run something like this: 3§, 42,
44, 30, 40, %8, .,. and so on for 145 nuabers, The list of numbers written down
constitubes a sample of sizes from the population of ovsrcoats he has sold dur-
ing Beptember and October,

By meking an snalysis of a series of specimens from & ceritain deposit
of ore, for persent of iron, & chemist might turn up with 1 measurement on each

of five specimens something like thiss 28,2, 27.6, 29.3, 28,2, 30,1, This is
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8 sample of iron percentage measurements from five specimens cut of an extremely
large population of possible specimens from the deposit.

4 record-keeping bridge playesr might keep track of the number of honor
cards ha gets in 200 bridge hands finding some such sequeuce as: 9, &, 7, 2, 4,

8, 0, & and so on for 200 mumbers., He would therefore accumulaste honor card counts
in a gample of 200 hends out of & population of indefinitely many hands which could
be conceivably'dealt under a given shuffling and cutting practice,

4 quality control inspector interested in maintaining control of the
inner diameter of bushings turned out by an automstic lathe would picﬁ\h bushing
every 30 minutes and measure 1ts inner diameter, obtaining some §q§h~sequence as
this: 11,0017, ,9%8", .999%, 1.001%, 1.002", etc, He is selectihg a samplg of
bushings out of the populstion of bushings being manufacturgds by this lathe.

4 Princeton personnel researcher goes tnrough th@ record cards of all
246 fresamen who took Mathematics 103 and writes dowa EEE methers for each student;
his College Board mathematics score and his Finel group in Methematies 103, His
sequence of pairs of numbers (arranged alphabet}i&lly with respect to students'
names) might run like this (880, 3+), (740, PV (830, 5), (620, 3), (510, &} and
so on for 246 pairs of scores. In this caée the sample would consist of all of

the freshmsn in the populstion of freshmﬂn who took Mathematies 103,

Notice that in this last example gach quantity in the sequence conszists
of two measurements, We could nention many examples in which the ssquence would

conmtain not only pairs, bub sets’of three, four or more measuremernts.
Wa could contlnueﬁbl h dogans of such sxamples, It is te be noted thet

in every example mentionedy the series of statistical memsurements may be regard-

\X
ed as a sample of meaigrements from a population of memsurements, In gensral,

there are two ki dé&ﬁf populations: finite populations and indefinitely larpge
populations, thséismple, the undergradustes now enrolled at Princeton constitute
a finite pquigtion. The licensed hunters of Pennsylvania form a {inite popula-
tion. ﬁ?iséquenca of numbers of dots obtained by rolling a pair of dice indef-
initely many times is an indefinitely large population. In the case of the dice,
the indefinitely large populetion consisting of the sequence of dots 1s generated
by successively rolling the dice indsfinitely many times. The population in this
case depends on various factors, such as the dice themselves {which may be slight-
1y biaged}, the method of throwing them and the surface on which they ares thrown.
If the dice were "perfectly true", and if they were thoroughly shaken before
throwing and if they were thrown on a "perfect” teble top, we can imagine having
an "ideal" population. We ocan use probability theory {to be discuszed in later
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sections) to predict characteristics of this "ideal" population, such ms the frac~
tion of rolls of two dice in which 2, 3, 4, 5, 8, 7, 8, 9, 10, i1 or 12 dets will
occar "in the long run", the fraction of sets of thres rolls of two dice in waicn
€, 2, 11 dots are obtained in that ordsr, and sv on, In the cage of the lathe
turning out bushings, we may essantially consider the populstion to be indefinite-
1y large, since the population is being generated by the production of one bushing
after another, with no consideration of a "last bushing”" (which, as a matter or
fact, sooner or later will be made). But the important thing about this popuia-

tion of bushings is that it actually changes because of tool wear or\shanges in

raw material frem which bushings are mads or changs of opera+ors,¢ﬁm For ary
particular shift of operators the population may be fairly constanu and & sample
of inner diameters of bushings taken during that shift may be ton3¢dsrea a8 a

sampie from an indefinitely large potential population Oﬁkﬁushlngs that might be
turned out under the particular conditions of that shifhe Even in the case of a

finite population of objects, a given sampling procédﬁre might be such that wheg
applied to & relatively small mmber of obJects in the population it essentially
begins to generate a population different fron the finite population one thinks
he is sampling. For example, if ona shoald'take every Z0th residence listed in
the Princeton telephons dirgctory and pﬁii‘the number for information sbout that
rosidence, one has, on the face of ;t;’g gampling procedure which might be ex-
pected Yo yield information fromxm?ﬁch ong could make aceurate infersnces ahout
the population of Prineeten réQ?&éﬁces with telephones. Actually, there will be
e substanbial number of reﬁi?ences for which there will be no reosponss. I we
take the sample of resideﬁcés in which & response is obtained, our sampling pro-
cedurs is not sampllqgﬁéhe populetion of regidences with telephones -- it is
sampling the populﬁéqon.of residences with telephones in which tel ephones &re
answered, These two populations of residences are actually different., For
example, thessacond tends to have larger families and more old pecple and cther
stay-at-hom types of people in them, OFf course, if we make enough repsated
telephone calls to the residences who did not answer the telephone originally,
we would thex be sampling the firat population,

Wrat is suppossd to be done with samples of meesurements? The main
reason for keeping track of such measurements is not simply to accumulate & lot
of numbers, but, in’ genseral, to try to learn something about the main features
of the set of numbers -- %heir average, how much they vary from one sncther,

etc., -- for the purpose of making inferences about the population from which
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they can be considered ag having been "drawn", None of these measurement-
mekers want to get Ray more data then necessary to make thess inferences,

Once he has what he thinks is & pretty sound inference as to what the pepula-
tion is (that is, = reasonably accurate description of it from the sample)

he oan then begin to consider what ought te be done (perhaps nothing) te change
it in some direction or other which will be to his advantage, or more often,

to use this information 2lsewhers,

The clothing store proprietor can find out from a sample whether he
is stocking the right distribution of sizes of overcoats; the chenlst’}br rather
his boss) can use the results of hie sample of analyses to help @chde whether
the iron ere is worth mining; the bridge player can satisfy hig Eurloﬁzty as
to hew freguently various numbers of honeor cards are obtaln@ﬁ {since he presum-
ably does not want to try to figure these things out maﬁtématlcally on the
assumption of perfect shuffling); the quelity contral expert can see whether
the inner diameters of his bushings are being kept\@ithln the specified toler-
ances and if not whether the holes are being madQ‘too large or too small and
by how much; the personnel researchar can de;ermlne how high the reletionship
or correlavion is between the College Bogp&;m;thematics test and the final group
in Mathematice 103 end whether it is higﬁ'énough to make wseful predictions as
to how well each entering freshman oug be expected to de on Mathematics 103
from a knowlsdze of his College Q?ard mathematics score.

Bvidently, conden 1Q§.the semple data in some way is vital iam any one
of these problems. The firgt "thing that has to be learned in statistics is how
to condense the sample ﬁé%i and present it satisfactorily, The main thing that
has to be learned is‘@%ai kind of inferences or statements can be made from the
sample about the g&%&ﬁation sampled and how reliable these inferences are. The
simplest thlng‘fﬁ;t can be done in condensing and describing samples of quanti-

tative data Iﬁ to make frequency distributions and describe them by calculating

certain &des of averages. Such quantities calculated from samples for describe-
ing samples are called statistics. Similterly, populations are dascribed by

pooulation parameters.

Only rarely is it possible to know precisely the values of poepulation
parameters, simply because only rarely does one ever have the data for the entire
population. The usual situation is that one ounly has a sample from the popula-
tion, Hence the usual preoblem is to calculate statistics from the sample frequen-

cy distribution and then try bto figure out from the values of these statistics
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what the valuez of the parametars of the Population are likely to be, In case
of extremely large samples, the atatistics of properly drawn samples will have
values very close to those of the corresponding populetion parameters. TFor
example, the averaze of a very large semple of messurements "randemly drawn"

Tom a popalatloﬁ will be very close to the aversze of the entire pepalation
of measurements. But in the case of small samplés the discrepancies tecome
larger, and the problem of inferring the walues of pepulation parameters from
sample statistics becomes more complisated and has to be settled by mweans of
preobabllity theory. O

_ There is a source of information in sequences of obsepj§¢ions whizh
is particularly useful in such fields as analysis of data fro@\scientific exper-
iments and industrial research, dovelopment and produstiqainghis is the in-
formation contained in the way in which measurements iygﬁlabout from wvalue te
value as one goss through the sequence of sample megsiwements in the order in
which they are made, The usual frequenc ¥ dlStPJbQFlOH analysis {to be gtudisd
in Chapters 2 and 5\ doss not takes ascoount of ths information, DBut we ghall
digcuss this kind of seguence analysis in G;apter 12,

")

X N

1.5 wualitative statistical chservatigms.

By gualitative statisticad Observations we mean o sequenca of obser-
. - . 7\ I . = a "
vations in which each ooservatﬂqg im the sample (=g well as the pepaiation)

belongs to one of several mytgalij exclusive classes which ere likely to s

non-numerical, Let us cons1der some examples,
4 person tosgagsa coin 50 Himes and obtains soms such sequsnca as
4, H, 7, T, H, T and“&o on (E=heads, T=tails). He is ezgentially drawing a

ample of &0 tosé§§ out of an indefinitely largs population of tosses, and is

making an obsarvatlon on each toss as to whether it is an H or & T.

Mg ﬁbvle producer polling agert steticned at the exit of the Prinmcetan
Playhousé\aﬁxlnv oubgoing moviegoers whether ar not they liked Movie X (just
seen), might get = sequence of 10Q answers sterting off like this: TYes, Yes,
No, Yes, No, Yes, Yes snd so on, {He probably wouldn't stop at this simple
question, however, since he would probably at least want to know why he or she
liked it or net,) The answers hers are qualitative; they are either yes or
no. The data accumulated are responses from a sarple of moviegoers out of the

population of moviegosrs who saw Movie X at the Piayhouse.
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4 Washingbon traffic analyst interested in out-of-Df cars coming
imto Washington during July 1948, night place traffic-counting clerks for
three one~hour periods on each cdd-numbered day in July at emch of the major
highway entrances into Washington to check license plates and record the
state {ignoring Virginia and Maryland perhaps) for each car., The record for
sach clerk would be a sequence of state names or initials (or tally marks
on a list of states}, These clerks are drawing samples of out-of-DU cars oub
of the population of out-of-DC cars going into Washington during July,.{?48.

As in the case of gquaptitative statistical date, we ocan havé,samples

of observations, eech of which consists of pairs, triplets, or aqy\nﬁhber of

qualitative observations., For exampls, if & public opinien q;eﬁtlonnalre with
ten opinion questions with yes, no or no- -opinion as poaslblg arswers on each
question were submitted to each of 100 psople, the resglﬁx would be 100 sets,
with ten observations in each set, '

For gqualitative obsgervations the problqmﬁtﬁ% how much data to gather
are similar to those for quantitative observatiBSE‘. Howevsar, the problems of
condensing the date and meking analyses of thsm ars, in general, simpler than
those for gquantitetive data. These problgms of condensing the data in a
sample of qualitative observations 1§~0p8 of counting frequencies and corput-
ing percentages with which observatiohé fall inte the various mutuslly
exclusive classes., For examplel” ﬁh a publie opinion poll, the analysis of the
results on & particular ques%ﬁén amounts te counting the number of answers
in the "yes", "no" and ' 'pg>opinion" classes and calculating the percentage
in each class. (See §3&>one of the Gallup Poll newspaper relesses,) [(There

are, of course, otk@r“problems of cross-tabulation of analyses, such as

finding the pergé}m;ge of those answering "no" to question B who anawered

"ves" on qugséiah 4, and so0 on,) If one has very large "properly drawn”
gamples Q{‘éﬁglitative observations, the analysis essentially stops with count-
ing and percentage amalysis, and perhaps in presenting them graphically. 1In
large "properly drewn" samples, the percenteges celculated from the sample

{the sampls statistics) will be approximately the ssme as the percentages for
the entire population (the populstion parameters] as one could cheeck if ene

had the population available. But if the samples are small, one is then faced
with the problem -- just as in the case of small samples of quantitative data

-~ of worrying about the accuracy with which one can estimate the population

percentages by using the ssmple percembages.
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Everyone is familiar with graphical presentations of percentages or
frequencies caloulated from qualitative data, HExamples can be found in magazines,
newspapers, posters, folders, information booklets, cote. Thers are two or Lhree
bagsic types of graphs or charts, of which there sre many sclored and pictorial
variations. The first is the bar chart with horizontal or weriical bars, of

which the following are examples;

Motor-Vehicie Traffic Fatalities [in 1000's) in the U.8. in 1943
Q

{From Statistical Abstract of the U.8., 1944-45)

Accideut involwing:

Pedestrians

Other Motor Vehicles
Running off Highway
Fixed Ob ject

Railrcad Train

Other Categories

Ordinary Life ImSurance Death Benelits in the UG.5. in 1648

Billionz L)
“Of AFrom The Institute of Life Insurance)
Doilars - {

1941 1942 1923 1944

Figure 1.1

In many popular presentations these monotoncus black bars are replaced
by rows of men, autos, piles of dellars, or other symbels suggesting the subjeot
natter which is being deseribed. (ften bar charks are used for presenting per-

cenbages or totals for a series of years -- one bar being used for each ysar.
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There are many elaborations of bar charts from which one can make €ASY Ccompari-
gens of numbsrs in sach of several categories for twe or more years, For exanpls
if one had the percentages of death by various major causes for New Jersoy for
1946 and 1947, one could consbruct a bar chart in which there is a pair of bars
side by side .for sach causs of death, one bar for 1946 and another for 1947.

The secord type of chart is the familiar pie chart which is particular-
ly useful in showing how the total or 100% of anything is divided up into certain
¢lasses. For example, hers iz a typicel pis chart (without the color}ng or

oross-hetching);

Left at
Interest "' &
21.5%

Used to Pay
Premiums
45.9%

Insurance
14.8%

How the 1845 life insurance dividends (dollars) were used by policyholders in 1945

(Institute of Life Insurance Data)

Figure 1.2
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Bxercise 1.
{Thess questions are listed mainly to provoke discussion - oral snd written).

1. If, in an opinion survey, you were asked %o select a sampls of 130 Princeton
undergraduates who ars sons of Princeton alumni, how would you select the sampls?
What is the population sampled? If thess 100 undergraduates are malled a queg-
tionneire and only 60 undergraduataes £ill them ocut and return them, what popula-

tion would be sampl=sd? O\
N

2 AN
2, Suppose you were asked to undertaks a study of electric cpq;%ht consumption
in private homes of Princeton during December, 1947, on thq'béﬁis of & sample of
S
300 households. How would you proceed with the sslectigﬁiﬁf'ﬁhe sample of

&/
addresses for such purpose? What is the population sﬁﬁ%ﬂed?

3. In investigating an allepedly bpiased six-sig@§>die, suggest a procedure fer

&
getting & sample of numbers you would need. ﬂﬁ}t would be the population for
this die? : O

R

“ N

4. In studying the burning life of a;&éw type of 40-watt bulb being made in
small quantities for experimentalﬁpﬁrﬁoses, & suitable sample cof msasurements

would conslst of what? Whai 1gMle population ir such a shudy?
)

¢ N

& ™
5. Ccnsider the washers Deinp made by an automatic machine for a certain kind
of precision instrument\:3What is the population of wasners? How would you

O
sslect o semple of whehers?
e

8. Indicate hq& rou would undertake to get a sawple of 200 sentence lengbhs in

studying s@nﬁeﬁés length used by Margaret Mitchell in Gone With the Wind. What

)
is the pqg&lation here?

7. Describe briefly how a radioc sudience ressarcher for S3tation WOR, investigat-
ing the amount of WOR day-time listening in Trentoa, might select a sample of

500 homes from telephone subscribers in Trewton, What is the population in this
example? If the investigator calls these 500 homss by telzphone and gets a

response from only 400 of them, what population is actually being sampled?

8. In studying the ftensile {breaking} strength of 1Z-gauge aluminum fence Wire

being turned cut continucusly at a factory and cut dinto 1000-foot lengths (plus
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e few feet} for coiling, suggest a practieal procedure for getting a sample of

meagurements which you could use., What would be the population?

Y. The Fish and Game Commission of & certain state wants a sample of 1000 of its
population of licensed hunters to fi11 out a post gard questiommeire, It has
dozens of hooks of licenze stubs from agents all aver the state giving nemes and
addresses cf the bunters. What would you consider to be a satisfactory method

of drawing a sample of names of licensed humters? I only 750 of the hunters re—
turned the filled-oub post cards, what population would be sampled? Aoy do you
think this population would compare with the entire populatisu of lickased hunters
(N

7'\
Ny

of the state?

10. A& small radio transmitter is designed so it mey be uspﬁxéb generate 8 certain
automatic signal. In making & detailed study of ths 1qyﬁ$%’of this signal and
how it varies Tor a single specified unit, how would\Jo¥ draw & sample of signals

from a given unit? What is the pepulatieon in thig<§§se?

‘“:\1.
11, Suppose you had 2500 ballots filled out/%nwe publlc opinion poll on a sample
of 2500 voters in City X, In the ballot‘tﬁgré is an item consisting of a list of
£ potential presidential candidetes, gpﬁiééoh respondent is asked to check one
name among them whom he would like tevSee as president., How would you condanse
thne results on this item for th§<é500 ballots and present the results? Supposs
in & second iltem the reszpon BQ§~éhSGkB whether he is & Republican, Democrat or
Other. How would you preseut the presidential choice data so as to show how it

varies with political &ﬂfiiiationﬁ What i1s the populstion in thisz sxample?

(N
12. If you sare Qs?éd'to find out from a sample of cars the extent te which Prince-

ton car ownerszé;é the various brands of autemobile tires, how would you proceed
to collect bﬁe:aata? How would you candense it and exhibit it when you get it?

A
Whet is t@é population of tires for the preocedure you would use?

13. The percentages of life insurence pelicies sold by United States companies in
1944 in seach of the following categories:; Whole life, Limited payment 1ife, Endow-
ment, All Other, were 28, 38, 21, 21, respectively. The percentages for 184z were
26, 36, 16, 22, Present this material graphicelly so it is easy te make compari-
zons within emch category for the twoe years., In this example, what is the

popilation? What is the sample?
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14. If a family should keep an scourste record of the disposition of its incomes
for a year, and should find the number of dollars for each of the catsgories:
food, c¢lothing, rent, entertaimment, gavings, all other, how would you present
the data graphically? If it were collected for three fuccessive years, how would
you pressnt it graphically, so as to make eagy year-to-year comparisons within

sach category?

\J
o
P
\: .
‘\\‘
N
«3"



CHAPTER Z. FREQUENCY DISTRIBUTIONS

2.1 Frggpsnﬂy Distributiors for “merouped leasurements -- ar eXampia,

Raw statistical deta as pointed out in Section 1.%, usually copsiste
of a series of readings or measurements. As an example, we shall take the
weights (tc the nearest .01 cunce) of zinc comting of 75 palvanized if;ﬁ sheets

of & given size as given in Table 2.1 [from A.5.T.M. Manual on Preq%ntation of

Data, american Scciety for Testing Materials, 1947, p. 4): i}
TABLE 2.1 D
"
Weights in ounces) of Zinc Coatings of 75 Galvanized Iron Shests
N

1.47 1.60 1.58 L V1.5 1.44
1,62 1.60 1,58 O 1.39 1,35
1,52 1,38 1,32 1,85 1.53
1.77 1,73 1.62 % 1.62 1.28
1,565 1.70 1478 1,83 1,46
1.53 1,50 .49 1.47 1,44
1,58 1.60 %) 1,34 1.47
1.37 1.48 ANL.B4 1,58 1.43
1.84 1.51 0N Lad 1.49 1.64
1.486 1.83 (\J 1,58 1.58 1.50
1.83 1,89 o N\ 1,48 1.54 1.681
1,54 1.50 L 1,48 1.57 1.42
1.53 1,800 1,85 1.67 1.87
1,82 1.8 1.6 1.47 1.75
1,60 UB7 1,57 1.63 1.47

" \“"

ThegeW7s zine coating weights wers measured on & ssmple of small irom
S _

shests oﬂ:Fﬁé;same gize by a chemicsl technique. The 75 measurements were a
sample of chemical determinations from a {theoretically} indefinitely large
population of chemical determinations which might have been mwade from galvanized
iron sheets st that time. Just by looking at the 75 measuremeats themselves,

one cannot tell whether the variation from 1,32 cunces to 1.77 ounces is due
mainly to warietions in the weights of zine actuslly deposited on the iron sheets
or to veriations in chemical technique, or both. This guestion would have to be

ssttled by an elaborate experiment. This kind of question always arises in

13
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comnection with measurements, although our common knowledge can sometimes answer
it for us, But we shall proceed as though the variastions in the measurements arec
due mainly te veristions in the weights of the sctual coatings.

The 75 measurements in Table 2.1 may be considered therefore as s
ssmple from an indefinitely large population of measurements that migkt haves beep
taken, Thus, if we had taken a further semple of 75 sheets we would havs cbtained
another set of 75 numbers, and so on for any number of samples of 75 we can
imagine as having been taken, We will consider this sampling problem leter in

the course, Qur job at present is to describe the information FurhiShed by the

gample of 75 pnumbers in Teble 2.1, ’\‘\
4 simple graphical representation of these 75 numbq?& is given by the

dot frequency diagram shown in Figure 2,1, in which each dok ‘repressnts an oo~

servation. The graphicael display in Figure Z.1, althoggb’giving a guick picture
of the dats and showing how it tends to "bunch up'\ihvthe middle, is ordinarily

not as useful for dsseriptive purposes as a cumuI&ﬁive graph as shown in Figure

2.2, which can be readily plotted from the 1nfbrmat10n shown in a dot frequency
diagram, In Figure 2.2, the ordinete of tha "step like" cumuletive grapk for
any piven abscissa gives the frequsncy Lor percent} of iron sheets having zinc
coating welght less than or equal to that particuler abscissa., The left.hand

scale of ordinates gives cumulatlve frequanoy and the right-hand scale gives

cumuletive percent. &s en exgm?le, we note that the ordinate at the abscissa

1,88 is 53, as read on the*f%ééuency scale, or 70,7, as read on the percent scale.
This means that there axe:55 iron sheets (or 70.7%) having zinc coat weights less
than or squal to 1.58ofhces.
Hote thgtvéhe ordinate for any glven abscissa at which a jump ocours,

is %o be exten@é&‘to the top of the jump. Faor exemple, the ordinate corrsspond-
ing to 1,5?\33 83 and not 50. Converssly, one may find the ab§c1ssa correspond-
ing to E@ggiven ordinate (read from either of the two scales). Strietly
speaking, the only values of the ordinates at which abscissas are actually defined
are those at which horizontal "steps” occur, and then the abscissa for that
ordinate is the abscisse corresponding to the left-hand end of the "step". For
example, the ordinete 10 (op the cumulative freguency seale) correspends Lo The
abscissa 1.89 {end not 1,42). However, if we take any value p on the percent
scale then draw & horizomtal line %o the right until we strike the step-like
graph (either the vertical dotted portions of the graph or the left-hand end cf

"step”) and then draw s straight line vertically dowrward until we strike the
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herizontal axis, the peint of intersecticn on the horizental axis is called the

p-th percentile, This means that approxicmately p perceri of the sample measure-

ments are less than or squal teo the vaiue of the p-th percentile, For exemple,

the 20th percentile is 1,64, The sctual number of cases less than or egual o

1,64 is 69 {or 82%), while the actual rumber less than 1,54 is 66 {cr B8%). The

degired percentage (90%) Talls wetween thess two percentages. The 50Cth percen-
tile is zalled the median, and in this case is 1,58. Actually, the number of
miasursments less than or squal fo the median is 8 {or 50.7%Y, whils thq number

less than 1,63 is 33 {ocr 44%). \

The 2&th percentile is called the lower quartile end th‘fath per-
centile is called tho upper quertile. The differeuncs Leureen ﬁhese two guartiles

is celled the inter-gquartile rangs, which includes aporox1mﬂtely 50% of the

sample mensurements, The lower ahnd upper quartiles in Efﬁhre 2.2 are 1.46 and
1.80, respectiwvely,., The inter-guartile range is theregoée 1,60 - 1,46 = (14,
The diff'erence bebween the least and greé%}é% meaguremente in the sem-

ple is called the range of the sample. In the,&ége of the data in Table 2.1 and
Figure 2,1, the ramge is 1,77 - 1,32 = .45, ™ .

Exerci§q;giés

{In these problems use graph Rsﬁar ruted with 10 divisions per inch}

,‘Y
1. & class of twenty studenx\\made the follewing grades eon a mid-term test:
30, B8, 31, 20, 33, 40, ? 56 28, 15, 198, 24, 22, 21, 28, 22, 25, 46, 29, 27,
Make o deft frequency Q;@gram and & cumulative graph of these grades., Determine
the range, upper gqéj}gwer quartiles, inter-quertile range and medien. Indicate
the qusrtiles and\median on the cumulative graph.

:“;:’

2, The f i&pﬁ&ng table gives the Vickers Hardunsss numbers of 20 shell cases
{Pedlar Data):

£6.3 61,3 82,7 80.4 60,2
84,5 66.5 2.2 81,48 67.8
85,0 62.7 82,2 64,8 £5.8
£2,2 67.5 87.56 80,8 53,8

Make a dot frequency diegram and A cumuletive graph of these nunbers, Determine
the range, upper and lower gquartiles, inter-guartile range and median. Indicate

the guartiles and mediar on the cumulative graph.
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3. The number of words per sentence in 40 sentences taken from g certain section

of Toynbee's 4 Study of History were as follows:

24 44 26 39 34
39 54 28 73 96

a8 80 25 28 21

22 35 7 42 34

54 36 17 41 55

20 23 22 12 36

48 15 27 44 16

58 21 70 50 40

39 43 42 20 35 _ O\
60 18 12 89 40

28 12 15 20 43 L\
19 19 85 41 86 N\

N/
Make a dot frequency diagram and s cumulative graph of.;ﬁegé nunbers. Determine
the range, upper and lower guartiles, inter-quartilgnﬁaﬁge end medisn. Indicate

the quartiles and median on the cumulative graph.

4, The following table (frem Grant) gives #hé:§}eld point {in units of 1000
1b/8q. inch) for each of 40 steel castingehV

Ne/

64,5 67.5 o387.5 64.5

66.5 73.0.8% 62.0 75.0

68.5 718N 67.0 69,0

68.0 68,5 72.0 71.0

85.6  {(%.0 71.0 68.5
66,54\ 67.5  £9.0  68.0

89200 £8.5 65.5 85.0

a0 68,5 68,5 70.5

ONet L5 87,0 66.0 83,5
“<?\“52.o 70,0 71.0 £8,5

Make a dot fr'éaéﬁby diagram and a cumulstive graph of these nurbers, Determine

the r&HEE,"3i§Er and lower guartiles, inber~quartile range end median, Indicate

the qu&{?élés end medien on the cumnlative graph.

5. Throw & dice 4C times end record the tetal number of points on each throw,
Meke a dot frequency diagram of the resulis, and also a cumulative graph., Also
dstermine the range, median, lower and upper quartiles, and the inter-guartile .
renge. (For the purposes of this problem vou can consider 5 throws of cne dis

equivelent to ome throw of five dice in case you do not have five dicel)

6. Throw tor permies 50 times and record the number of heads each time. Make

o dot frequency disgram snd a cunulative graph of the results, Alsc determine
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the range, the median, the lower and upper quartiles and the inter-quartile range,

7. ©Shuffle a peck of cards thoroughly and deal off a hand of 13 cards. Record
the number of honor cards. Return the cards to the pack and rapeat, Do this 40
times. Make & dot frequency diagram and s cunulative graph. Algo determins the

range, median, lower and upper quartiles and the inter-quartile range,

N\
2.2 TFrequency Distributionsfor Grouped Memsurements —- ap exarple.
2\
If there are more than about 25 observations in the sampre of data, the

construction of dot frequency diagrams or cumulative graphs f@ffyngrouped data
often involves more detail than is usuwally needed for praigégal purpopses, One
does nob distort the pertinent mumerical information pTavided by the dats %o

amount to anything from a practical point of view iﬂ %@E data are grouped., In

this case one can use grouped frequency dlstrlbutxpns and cumulative grouped

frequency distributions. To define these groupéd distributions we first construct

a frequency table, Returning to Table E.ln?mr looking &% Figure 2.1) we find the
least wvalue in the table to be 1,32 &nd.ﬁﬁé‘iargest value to be 1.77. The range
is .46. We now divide the range into g:ﬁumber of equal intervals of convenient
length, This means that the lenggh:should be a "round number", The number of
infervale is usually taken %o 4 é:bétween 10 and 25, A convenient interval for
our example is 0,05, which giwes us 10 class inbervais or cells. We might alse

have uged 0,04, 0.03, or Q;bé’ but. we would uaually avoid 0,0333, 0.055, and

cther such 1nconvenlen£\number$-

We now ta{@ o cells to be 1,275 - 1,325, 1,325 - 1,375, 1.375
1,485, and so on to 1,725 - 1,775. HRote the following features of these cells:
{a) each 1s.oiﬁiength 0.08, {v) the boundaries of each cell end in a 5 and ere
written wi\h one more decimal than iIs used in the original data of Table 2.1,
(¢) the upper boundary of any cell is the same as the lower boundary of the suc-
ceeding cell {this is a convenience end will cause no embiguity since Lthe boun-
daries are written to one more decimal than is used in the original date in
Table 2.1).

The cells are constructed so they will have the following simpls mid-
points respectively: 1.30, 1.35, 1.40, and so on ta 1.75, {We can have all

these nice properties since we took a round number for the cell length.)}
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The frequency table can be exhibited as Table 2.2, The cell boundari
=

are shown in column {a), the midpoints in columa (b). The 3allied freguencies

with which the observations fall intc the various cells are shown in celumn {c)

The frequencies are shown in column {4},

The relative frequencies in column (e

the sumulative frequencies in colum (f), and the cumulative relative freguencit

in column (g}, The last two columns are asscciated with the upper cell boundap.
ies, and their entriss are sometimes dropped o half line in the sable.
What we are really doing in this grouping procedure is &w arbitrarily

assign ths one measursmept in Tabls 2.1 falling in the cell 1,3’{5 - 1,325 the

€ N\
value 1.30, arbitrarily assign the five measurements in Taphev271l falling in the
\
cell 1.325 - 1.375 ths value 1,35, and so onm, AN
N
TLBLE 2.2 AN\

Freoguency Distribubion for Groupeg\ﬁeasurements of
Weights of 75 Zinc Chstings

A

(e) () (e} RASECY (o) (£) (g}

oW Cumulats

Cell Cell Tallied 49 Relative | Cumulative | Relati

Boundaries | Midpoints Frequep:ay ’ Fraguency § Frequency | Frequsnocy | Freguen
1.475+1,325 1,30 1 L,e\J i L013 1 L0213
1,325-1,375 1.35 IH:L_\\ 5 067 ] .080
1.3768-1.4256 1.40 TG 1 8 080 12 .180
L1.425-1.475 1.45 e e e S R I 13 173 25 L3535
1.,475-1,5286 1.50  (fEed 11l a8 107 33 440
1.528-1,875 1,55 (0 Tesd 1l mag 11 17 SRRT 50 . 667
1.875-1,626 l’éﬁl:\ e R 5 14 .187 584 .8584
1.625-1.6756 i t3dl 11 7 .093 71 947
1.875-1.726 | L0 1 1 013 72 . 950
l.?EE-l.TTEﬁ;'\:‘l.TS 111 3 040 75 1.000

graphically as a fregusncy histogram as shown in Figure 2.3,

The frequencies [columns (d) and {e}] in Table 2.2 can be represented
Nete that two scals

are provided for the ordinates -- one scale refers to frequency the other bo rale

tive frequency expressed in terms of perceut,

& more useful graphical representetion of the materisl in Table 2.2 is

given by a cumulative polypon for grouped data ems ghown by the heavy graph in

Figure 2.4.

This graph together with the twe scales of ordinates s the graphice
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representation of columns (f) and {g) of Tavle 2,2, In this graph the points are
plotted above the upper cell boundaries and pot above the cell midpoints,

The cumulative polygen provides a simple and quick graphical procedurs
for approximately determining percentiles without golng to the degree of detail
involved in using the cumulative graph in the ungrouped case (Figure 2,2}, For
example, the 90th percemtile is 1,85 cunces. (8se dotted lines in Pigure 2.4.7
This means that approximately S0 percent of the observations have values less
than or ejual to 1.65. {(The actual number of such observations less than or equal
o 1,65 guncss is YO or 93.3%, a5 will be seen from Table 2.1 and Figuré\ﬂ.l.

The actual number less than 1.65 is 59 (or 92%), so that our group@Q:ggrcantila
doss not necessarily have the bracketing charscteristic as in thq;hngfouped per-
centile, In other words, 90% does not lie betwsen 9% and 9305%.) In general,
the larger the number of ouservations, and the smaller tha\sglls the more accur-
ate these percentile approximations wiil be,

It will be sesn from Figure 2.4 that the msgian is about 1,54, the
upper quartile 1,597 and the lowsr quartile 1, 459\\ Hote thsat the values of these
quartiles as determined from the graph in Flgure 2 4 ars slightly different from
the walues found from the graph in Flgure'zglﬁ This is due to the effect of
grouping. {::}‘

We have been talking about g;éﬁped and ungrouped deta -- yet the origi-
nal deta itself could hs cor31dareQ as grouped with cell length equal to .01 if
the original measurements in &Q}e 2.1 had been given te three or more decimal
places instead of two, The qustlon of deciding how many flgures or decimals to
keep in a set of measurememis arises in most measuremewt problems, and has o be
settled in each caso, \in the present problem, it may be considered deubtful
whether the zinc 3 tlng measurenents would really have sny significance 1f car-
risd to three orzbore decimal places, Or even if they did hawe significance thers
is such a wm&e varlatson of weights from one iron sheet to ancther that it may
be consld;}ed a5 not worthwhile to have weights measured more accurahely than to
two decimals,

If, therefors, we should consider the two-decimal measurements as
grouped from measurements to three or more decimals we could construct a cumule-
tive polygon for cell length of .0l just as we have done for cell length of .05
(Figure 2.4)}. Actually, the frejuency polygen for a grouping with cell length
of ,0l, the cells being centered at 1.32, 1.33, 1,34, and s0 on to 1.77, could

he sonstructed from the cumulative graph in Figure 2,2 as {ollows: Take the
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midpoint of esch "unit pert" {(,01 ineh) on each horizortal poriien of the
step-like graph in Figurs 2.2, The firet point will ke on the axis ©f atscissas
et 1,315, apnd the last cne will be at the top (1007 point) of the ordinats
erected for the abscisea 1,775, This cumulstive polygen would be simpiy chbained
then from the cumulative praph of Figure 2.2 by trimming off the corrers. The
ganeral course of the cumulative polygon constructed from the cumulative graph
in Figure 2,2 and that of Figure 2.4, as cone would expecth, 15 similar except that

O\
the cumulative polygen in Fipure 2.4 is "smoother”,

We can determine from s cumulstive polygon & roxima”\.: the nutber
of cases in the sample lying betwsen two values of the absqi%ga. ror example,
gupposae we are interested in the number of cases in thgmééﬁble hawing sins coat-
ing weight between 1.42 and 1.68 ounces. 1.68 is t}}e‘j\(}irlii percentile, and 1,42
is the 14,7 percentiis, 54.8 - 14,7 = 80,1%. Thig Fifference is approximately
the percentage of cases having zinc coatings Qeﬁ%ﬁ%n 1.42 and 1.68 cunces., Tne
sctusl mmber of cases is 59 (or 78.7%). ‘.”?\V

'S :‘
Ererclife 2.2,
{(Bach student is expectad to‘aﬁ st least one of problems No. 8, 9,
10, 11, 12, 13, 14 and oukeap g record of the dats in the order
in which it was obt ;<ed ~- also & resord of all culcoulatiaons,

The record will hezneeded in future problens.)

1. BEach of 300 m?asu§eﬁanta is given in inckes %e¢ three decimal places. Tho

largest meaaurewuet is 2.062" and the smallest is 1,997". Make up an oubiine
of a fraquenc \kable showing cell boundasrises srd cell midpoints you would 4SS
2, Me;iurﬁments on the crushing strength of 270 bricke {in pourds per square
1nch)g\are given to the nearsst 10 pounds. The largest memsurement is 2070
and the smallest is 270, Set up an outline of a freguency table showing cell
boundariss and cell midpaints.

8. Suppose the cell midpoints for a given fregusnoy distributien are 110, 1is,
120, 125, 130, 185, 140, 145, 150, 185, 160, Make up an outline of a freguency
teble showing cell boundaries,

4. Make up an outline of a freguency table you would use in presenting .the



m

hzights of all Princeton men of $he Cluss of 1982, if the neights wer avallanle

to the nearest quarter of an inch,

5. Find the 10th, 40th, 60th and 80th percentiles graphically “rem Figure 2.4,
and compare them with the 10%th, 40th, 80th and 80th percentilas as determinad
graphically from Fipure 2.2, Working from Figure 2.1, find the artual percan~

tages of cases less than or sgual %o cach percentiiz in the two cases. Also

find the percentages of cases less than each percentile in the two cuses,

O\
Instructicas for problems & - 14, In cach of the problums Eqéﬁ\ﬁ te 14
the follewing operations are to be carried out: N
N/

(a) Make frequency table, showing frequeacy and ghmulative
“reguency distributions, relative frnqu?y{?iand.rela-
tive cumuletive froguency distributiapnsS)

{b) Construct a froguency histopram. N\ )

(e} Construct a cumulative polygon ang:?1nd the tweo quar-~
tiles, the median and the 1nt€raquartlle range from

the graph. R

8, In the following table are given the scholastic aptitude scores of the €6

departmental studenmts of a certaix depertment in the Class of 1938:

345 530 p '\‘ws 354 59% 574
395 516 a7s 494 417 494
563 a4a () 629 439 486 560
505 804 ;7 450 348 604 464
402 206 () 730 505 515 549
472 &y 611 585 523 541
691 &2 . 468 458 545 458
624 s'\\é 574 578 505 a29
523 “‘3 576 420 603 527 a07
481 (N\N© 439 596 417 384 450
490\ 523 585 585 431 545

7. The following table gives 126 observations of e spoctral line (Birge Data),
where only the last two digits of the reading are recorded. For example, the

first reading is actually 65,177 mm, of which only the 7% is recorded.
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m 74 73 ga 77
78 85 80 81 80
75 69 72 83 79
75 80 79 74 78
70 74 83 (& 9
73 81 87 82 79
78 79 78 74 85
83 79 83 8l 84
81 88 79 80 78
77 80 85 80 78 N
72 75 73 85 79 Oy
78 6 80 78 76 A\
79 75 85 81 78 O
82 78 78 78 79 N
86 79 79 84 ERON
Y
78 75 77 82 8
79 77 72 77 g1
83 75 82 90 T
80 78 85 gL~ 74
79 80 LEIEDN ) R
81 74 TRAN T4 86
77 82 w8 T4 78
75 T4 \B% 78 a4
72 84 73 77 77

78 ?5\ 81 79 74

See 1nwﬁtlons preceding Problem 6.

8. Roll § dice and rtioar'd the total number of dots thef appear, Repeat this
A 4

50 times, See :Ln?Kuﬁtlons preceding Problem 6.
&

2. Bhuffle a'%cﬁ: of ordinary playing cards, deal off two hands of 13 cards

each (one"\;B.yours and the other belengs to your pa.rtner) and record the total

numbarﬁqi‘»honor cards in the two hands. Repeat this 50 times,

preced ng Problem 6.

Bee instructicns

10. Teke 25 pennies (or any other kind of coin), put them in an smpty pocket,

Jingle them thoroughly, teke them out, spread them on a table, count the number

of heads and record the resyuit. Repeat these operations 60 times. See imstruc—

tions preceding Problem &,

1l. Take 50 thumbtacks, shake them up
»

throw them on a table count the m
umber
of tacks that fall point up, ’

end record the result, Repeat this 75 times. BSes



Saec. 2,3 2. FRELUENCY DISTRIBUTIONS 27

instructions preceding Problem &,

12. Piek up any book (containing no formulas!), open the book at random, count
the nwnder of e's on each full line on the 2-page spreed and record the number

for each line. 8es insbructions preceding Problem 6,

13, 7Take any mathematical table such as a table of square roots, logarithms or
trigonometric functions, in which the entries are blocked off in sets of five.
Start with any block in the tebls you please, note the last digit in eaq? of the
five numbers in the block, and add these five digits together, Record\the sum
{which will be one of the 46 numbers 0, 1, 2, 3, ..., 45). Rsp?gf\bﬁis for the

next block, the next, etc., until you have 50 blocks. See instriétions preced-
:”k

ing Problem 6. 9.

m\
14, Get 50 mestel-rimmed price tags sbout 1 inch in disgeter at any stationery

store. Mark 10 tags with the number 3 on each SldaQ}lO tegs with the number 4,
10 with the number &, 10 with the number 6, and i&‘w1th the number 7, 8tir up
this population of fifty tags thoroughly in af powl or an empty coat pecket.
Praw cut a sample of b tags, and find thefﬁéﬁn of the numbers on the five tags,
Put the B tags back in the populationQ@ﬁé:ﬁraW'another sample of 6, Repeat

this 80 times. See instructions prgcéding Problem 6,

2,3 Qunmulative Polygpons' Graphed on Probability Paper.

Tou have nqﬁ\blotted enough cumulative polygons to realize that they
are usually steeRé%\ln the middle than at the ends. This is & very general
cnaraﬂterlstlc 0? cumulative polygons, It is sometimes convenient to plot them

o & Spec ﬁlsklnd of graph paper called probability graph paper so that they
This is accomplished by stretching the

become approximately straight lines.
percentage scale for low percentages and for high percentages, If we plot ths

cumuletive Prequency polygon shown in Figure 2.4, we obtain the graph showm in
Figure 2.5 which is much more nearly & straight line, Cumuletive polygons

plotted on probability graph paper will be discussed in greater detail in

Section 8.3.
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2.4 Frequency Distributions -- Beneral,

The general mspects of the procsdures exemplified in Section 2.1 and
2.2 should be noted. In general, we start off with a set of n measuremenks of
X

some kind., We may call these measurements X, , X . Xn and in practice

1* e 7
they would be displayed in = table similar to Table 2,1. In Table 2,1, for ez~
ample, n = 75 and we could taks Xl = 1,47, K2 = 1.62, caa, X75 = 1.47.

In thelr ungrouped form, these measurements may be represented

graphically by n dots in a dot frequency disgram exemplified im Figuped2\1l. Here

esch pessurement in the set of n measurements is represented by a ﬁ?ﬁ\placed
abovs the value of that particular measurement wherever it occcurg\aldhg the
X-axis. The dot frequency diagrem gives a convenient pictoria};;rrangement of
the X's ranged from least to greafest, ties being indicatedl%y éots placed in
vertical columns of 2 or more dots. o)

These n measurements can mlso be graphical{y‘represented, in their un-

$
grouped form, by a cumulative praph, In such & gﬁg@h, the ordirate erected at

any given abselissa simply represents the numb@rtof the mensurements (i.s., the
muatber - of Xts among the sst Xl’-XE’ PR §gﬂzwﬂich are less than or equal to that
given abscissa. This graph can be consirpeted immedietely from e dot frequency
diagram, since the n X'es are arranged}iﬁ order from least to greatest in that
graph, w<:

The hendling of tha~n<iﬁdividual measuremsnts in ungrouped form becomes
too detailed and laboricus fler practical purpeses if the tofal number of differ-
ent numerical walues ac?u&il} tuken on by the n measurements is very large (more
than aboﬁt 26 for prge%ééél purposes). This amcunts to saying that working with
ungroupéd data i??é;;;; too much detail if the dot freguency diegram has more
than abouat 25 ve%;ical columns of dots (each column conteining one or more dots).

Sugéégé the dot freguency disgram contains more then aboub 25 columns
of dota (;ﬁdzthis can be determined eassgily by locking at the n measurements and
seeing how meny different numerical values are to be found ameng them). We then
proceed to group the date to simplify matters. Te do this, we look through the
n measurements and find the least and grestest valuss, We talke the range {the

difference betwesn the least snd grestest valuss) aund divide it into some
mumter of egqual intervals, making sure that the interval length actually cho-
sern is a simple one in terms of the original urits of measurement, This usual-
ly means that it will not involve & lot of awlkward dscimals., When there are

a very Few memsuremsnts far cut on one or both ends cof the distribubion, it
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will often pay to use a smaller cell length and hence mere cells., We then pro-
veed to cut the X-axis up into cells, each gell being an interval of the length
chosen, and each cell having a slmple and comvenient midpsint. Once we have
decided the cell length and the midpoints of the cells, we then proceed to arbi-
trarily assign every measurement falling in a given cell a value squal to the
vaive of X at the midpoint of the cell., The sell boundaries for a given cei]
are placed ons-half of the cell length on sach side of the coll midp?in‘t.

O\
We shall use the following notation:
L)\
k is nmumber of cells K\ \/
¢ is length of sach call \ \/

*1+ Fz» »eny X 8re the midpoints of theofiﬁsgi second, ..,,
k-th cell as counted from left to rightae

fl, f2, vomy fk are the numbers or fregﬁéncies of the
measurements Xl, XE’ P Xn in tﬁéb?irst, second, ..,, k-th
eells respectively, s“?\

F1 7 By m L s E, AT e Foer Iy ¥
cen ¥ fk = B, are the cumudative frequencies assooiated with

the upper cell boundari§s~for the first, second, ..., k-th

itgp?sslble te use the laftehang boundary of & cell ge the
'féétht-hand boundary of the Preceding cell without ambiguity

LY
\ >
m\./

88 to which cell o £iven measurement belongs,

are reprasented in Figure 2,8,

These symbols

s What we are really doing is this: every
I' messurements Xl’ X, oes, Xn which

I13ois arbitrarily 8iven the value X,s BVEry one of the
f2 measurements which falj ip

¢ im arbitrarily given the value Xp, and
so on for all of the cells,
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TABLE 2.3
General Frequency Distribution of Grouvad Measurements
{a) (o) (e} () (e} () (g)
Cell Csll Cell Fre- Relative Cumulative Reiative
Ha. Boupdaries Mid- {guency) Freguency Fregqusnay Cumulative
point Frequency
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We have deliberately put in the notstion for cell No, i because we
shall frequently went to refer to & "typical" cell in the table and we cen do
this by talking aboub the i-th cell, its midpoint Kys etc.

The freguency column {d) and cunulative frequency column (f) in

Table Z.% can be represented graphically as & freguency histopram and a cumuls-

tive polygon respectively as shown in Figure 2.6, The value of X corresponding
to any given percemt, say p, as determined by the cumulative frequency polygon

ig called the p-th percentile of the measurcments. I\

In particular, the EOth percentile is the median, the 25th per"eﬁtile
the lower quartils, the 75th peroentile the upper guartile and th\e dlfft,rence

between the upper and lower guartilesz is the inter-quartile z;g«ng_.

N
Exercise 2.4 \\

3. TFor sach of the problems Ho. & tc 14 of E}cerci;@\\z.z which you did, plet the
cumuzlative polygons on probability paper. \‘

. E - F - F.,., it ¥em s s T
2. Express Fli - F5, Fk 1 Fi 1+J’¢l:~na Férms of fl, fE

R N1
N

3., If the cell length is doubled, th}ij;'v, approximately, will happen o the
entries in the frequsncy colimn 0{{& frequency tabls?

¢ )
4, Wnat is the largest possf&j\, charnge which can happen to a messurement whon

changed from its orlglnalu,vaolue to & cell midpoint? Illustrate when ¢ = .05 and

WY X
the measurements are r,n{d'e to twoe decimals.

\E 4

O , 1
5. Referring te o%bfe 2.3, how many measurements lie hetween X, -5 and

x, + %- e ¥ Egia'f‘.’ess your answer in terms of the capital F's. Also express it

'\‘.l
in terms }xf “he lower case 72,
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3.1 Mear and 8tandard Devistion for tac Case of Ungrouped Beasuremente,

In Bections 2.1 and 2.2 we have ssen how a piven sarple of atatistisal
measurements in both the ungrouped and grouped forms can be condensed into tables
and graphs, and how informalion pertaining to percentiles can be oh¥alned Iron
the graphs. Tor insfance, the B5Oth percentils or median is thg.\fmiddle" of %he
distribution of measurements in a csrtain well-defined sensa, :\;"I‘he. inter-guartile
range is an indication of the "scatter" or "spread” of they mggsurcments in .
well-defined sensa, ) m'\:

There are obhsr important ways of desoribigfvthe "middle” of the dis.
tribution and the "spread™ of the disffributiau. ..{qjthis section we shell discuss
the arithmetic mean or simply the mean of the.d:i;s"‘tribution of sample measurements

% 3

as enother description of the "middle" of the, ¥istribution, and the standard

Ne/

deviation of the measurements as another \deseription of the “"spread” of +he disw
—— NN
tribution, A\

NS
«al
"y Y

3.11 Definition of the mean of &\sample (ungrouped},
AR

45 & simple exam%{;n%uppose the weights {(in pounds) of five students
ave 141, 136, 167, 143 apd 138,

Y The mean of this sample of five weights is the
sum of the weights diy'(f{,e& by 8, i.s,
o - 141+ 136 ¢ 157 + 143 4
figan = 257138 L 75 1is e,

Y 5
In 'gsﬁ%qral, H X, K, gy vun, X is a sample of n measuremsnts, the

sample maan.%‘of the Xt

5 is defined by the following reletion;

(5.1),\”\;~~’ ni=xl+x2+,..+xn.

. n
We can write the Sampla gum Xl ¥+ Xz AT Xn more compactly as ZX.

J=1

where Z is the Oresk letter capital sigma (ehosen o correspond to the first

i}
letber of the word "gup"j, i
rd Yaun") ZXJ, 18 o be read: "the sup of X sub j from j = 1

j=
to j =", Hence, (3.1) oan be written more Compactly ag
pa}
(5.2} nX=5x_,
_ 31

34
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from which the formula for the mean X is written explicitly as

(8.3) E-i3

3.3 = =
25x

=1

n .
We shall be uging the sample swnZXj so often that 1t will be convenient teo simply
J=1

call it 8(X), read "sum of X" in which case we may write (3.2) more briefly as
(3.2a) n X = 8(X).

N\
and (3,3} mors briefly as
— 1 0'\“\'

8.3 X== . . “
(5.30) Lsn) S

i we refer %o our exemple of 5 welghts we would have T o= 3, Xl =141,

5 O
X, = 136, X, = 157, X, = 143, X_ = 138, jZixj = 715 (015'..,?,[}() = 715) and applying
formula (3.2} to the 5 weights would give 5(X) = 'Z{ﬁ,,‘or the mean ig X = 2-15;-5- = 143 1bs.
$

The mesn of the sample of 70 measureﬁé}bs in Table 2.1 is given by

75(X)

1,47 + 1,682 A .., + 1,47
114,52 _ay

<

or : ‘f""'

T = 1.587 ounces.

In other words, applying the Q’)gﬁmla (3.2) to the meesurements in Tebls 2,1, gives
75(X) = 114,51, and applying\fﬁ.S) gives X = 1,527,

Suprose we ta.j{‘\é”gﬁ'l"xe difference between sach X and the mean X. We have

& 1 z
\\
hacause éﬁ {3.1). Hencs by using summation notation we have

{3.4) Z(Xj-f)=0.

J=1

the mean of mll measurements in the gampls is equal to zero.

Returning to our example of 5 weights, we note that the differences be-

tween the measurements snd the mean are (141 - 143), (136 - 143), (157 - 143),
(143 - 143} end (138 ~ 143) or - 2, - 7, * 14, 0, - 5 rsspectively, and that the
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aum of thesge differences is zsro.

3.12 Definition of the standard deviatiom of a sample {ungrouped}.

Considering the example of the 5 weighis again, supposs 'r:fe square the
difference between each measurement and the mean and add them. The standard

deviation s of the & welights is given by the following relation:

2 2 2
(5-1)32 = (141445)2 + (136-143}° + (15?..145)2 + (143-142)7 + {138-1453)

or N
R R TR R T O\
From this we find ' . \“\ -
s% = 68,50 N
3 = 8,27 .,

More gemerally, if Kl K2’ swas X is a\‘aample of n messuremsnts, the

standard deviation Sy of the sample is deflned\y

(3.5) (a-1)gf = (x,-E)% + X B+ e (1, D

Using the summatioe notation this can ba written more briefly as
& ¥

(3.5) (11-1\X Z (3, 3% .

The quantity SK‘\ 5 sguare of the standerd devietion Sy,is called the
varierne

of the samnle. e shmll not rewrite {5.5), {3.8)
\¢

80 a8 to give an e;&llcn.t formula for the ztandar

perfectly well tmlk about the standard devint]

ance 52{ gwen

or any similar lornula
d deviation sx. For we can

ten s given by {3.6) or the vari-

{3 6) without having to write down two formulas,

pr Frd}‘i the point of view of computation, a Pormula wnich is often more

conw nlbnt when a caloulating machine is awvailable can be found from (3,5).

» BY squaring each term on the right-hand side of (3.5) we have

2 2 = -
BT sy =0 2T By o (B X w2 ex T )
X 1 1 2 o vea . o
or collecting terms '
(3.9} ("1‘1) (K"'Xz*'..,*X}—ZX(X +X -..+X)'+n5f2,
T

But frem formule (3,1) it is seen that

X =
BEX=AR X, v X)
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which, when used in the right-hand side of (3,5) gives

2
1

==, =R

(2.9) {n~1) 2 - (X, + X v * XE) -2 n X +nX
X b b} ’

Using swmmation notation
2 _ e .2 22
(3.2 {n-1} s, = E  -nX
X % J
J=1
which is the desired formula. 1In prectice, it is convenlent to del&y*%hs divig-

ion by n in celculabing X and to caloulate sz

X from the formula rit\’
o
2 L 2 \
{(3.11) {n-1) so = © L [ X }2 N
X Z J a Z SR, \ I
i=1 j=1 (&

which may ba written still more briesfly as

2 ax%y L AN
{3.11a) (n-1) sy = S{X*) ~ = i SQJ .

Tt should be noticed that Bx and S(g}‘ére two entirely different

™

symbols end have entirely different meggipgg. ey

LN

is the stendeard deviation of

the sample and S{X) is the sample suﬁ?zi.e., the swm of the measurements in

N\
As en sxampls, if\?B.lla) is applied to the 75 neesurements of Teble 2.1,

N

the sample.

we find P N\Y;
A\ 2. o
74 si = [ (1,4—7]2-;@;}2)2-& ves ¥ (2,477 - 7—15 [ 1,47 + 1.62 + ... * 1.47 ]

e/
{175.5649) - -755— (114,510 = .7510

m
|

N
3 —\”.\5)1015
s, = .01
ve noticed that n-l appears in Pormula (3.6) for the variance
for this ig thet slthough there ars

You will he
Qne reason

vnere you might have expecled n.
tha sun of thess pquares actually re-

& squares oa the right-hand side cf {5.6},
Po see this, consider the cese of a sample of

duces io n-1 squared guentities. 3
and (X, - )% - 0, so that formula (8.5) in this

one nersuremnenk Xl" Here X = Xl



38 5. SAMPLE MEAN AND STANDARD DEVIATION Sec, £,1Z

chse is ) )
1-1) sy = (x, - 07 =0,
Now let us look et ths case of a sample of two measuremsahs X.’L and. Xp'
. - _X+X . .
Since X = 1I.2 2, we have for the right-hasd of (3.8}
- + 2
x -0 s @ -0% - -4k x - Rh)
. z o S T
N
= X % N2, A
\)
Ve ')
4 W
Thus {3.6)} reduces o ,"(“"5
- 2 '\‘
(2 - 1) s; - (Xl 21,00
vz .'\\;

which hes only one sguared term on the right, ;',\v

NN

In cass of samples of three mea§g;éﬁents Xl, Xas Xs_. the right-hand

N

side of (3.8) =en be written asg A\

O . 5
{xl-_)2+ (xz_"]z* (K3{Y)2=(X1"XB) + (x1+x2- 2 X7

7

3
\\\\.'
N\
£ )
79 N/
3
N4
)
/

/2

\
e \a
$7

In other wards:g}g} sum of thrae sguares reduces to the sum of two sguares,

Q n
{\\'{It is generslly true that Z {Xj - i)z can be written sz the sum
/ c 3=

of n-l\"(}nd no fewer)

squared differences among the sample measuramenkts, For

n
this reason we say that Z {x
jei

(z = 1) rather than u in formula

. .
3 - j has n - 1 degrees &f freedom and we use

{3.8) in defining s§ .

In the preceding paragraphs we have been talking about sample means

and standard deviations, We should remember that in most statistical problems wo
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wori with samples, rather than populations from which these samples are supposad
to have heen drawn, becauss it is only rarely feasible or poseible to obtain
measurements on an entire population, snd then only in the case of a firite pop-
ulation, If we did have measursments for an entire finite populstion we could,
of coursa, compute the mean a of the populaticn just as ws have calculated the

mean X of & sawple, Similarly for tne varience,

Exercisa 3.1. £\
1. Final inspection of nine aircraft befors delivery revealed the,following nue-
. ¢\
hers of missing riveks: 8, 18, 14, 1%, 1i, 15, 8, 11, 21. Find khe’/mearn, variance

N/
and standard deviastion of the nmumber of missing rivets per plane,
<y

2. The first tem sentences in Somervell's abridgement'af\&éynhee’s 4 Study of
History bhave the following numbers of wordsz: &%, 19, 11: 39, %, 12, 15, 28, 44,
24, Find the mean, varisnce and standard dBViatéf?;B} these sentence lengtha,

3. Fiwve 2000-piece lote of a certsin elcctriéélsdevice contained the followling
nuekers of defective piesss: 4, 9, 3, B{fi} Find the mesi, variance and standsrd

deviation of the numher of defectives. NN

4. I£ X %1, % =6, X =4, X {7, x_ = B, find the value of the following:

P4 3 ’ m%\ B
5 <:”u 5
2
(a) > X \ {4) Z (sxj * zxj}
j:l "’.zn' J=1
PN s
5 .“'5 .
o AT D
J= \A =1
\5 5
(ghN7 (%,.-2) () 2 X - 1) B+ 1)
O 5
8, IY Xi’ XE’ auny X. are say mumbers and if € is any constant, show Shat
n

It
1=CZJ(._.

i

n
3 cx,
31

{Check this for the oxampls X, = 1, xz = 2., X =n, =8 € = 5.)

6. If X, X

o Xys een, X and [ OPIR FPRERRY T are any two sets of numbsrs and A and

B are any two constants, show That
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1l T _ i

S (ax + BL) =AY K. ¢ BZYj .

=T R R S S B

(Check this for the sxample: & = -6, B=9, n=4, xl =2, X, =4, XS ~ 5,

XSG,Y=2,Y2=—1,Y5==O,Y23‘)

7. S8uppose X,, XB’ wsas X Bre n measursments which have mean 10 and standard
§ n

e

Ll

deviation 3. If & new msasurement ¥ 1s obtained from each X measurement 5y

eguation ¥ = 4X + 2, what are the mean and variance of Yj.’ Yz, cans Yh (N

N
oA

8, If the mean of measurements Xl, Xz, P KV1 has value 4 and ti:{é stundard de-

riabion has value B, and if ¥ = aX + b, what ara the mean axd spandard devizbion

of Yl; Yz, rees Yn’ exprassed in terms of A, B, a and b"*‘?g\\

D
’..x\“

3.2 Remarks on the Interpretation of the Feay and Stondard Devs

N

R i e T =]
[ L ey CRaty =
VIS R N [

It was Pound that the mean of,‘t::i;a}a~"‘sa.mple of 75 measursments in Table 2.1

is 1,527, Turning to Figure 2.1, it‘wiii be seen that the mean {indicatsd by the
arrow) is nesr the "middlc" of the™distribution of dots. Actuslly the mean is at

the center of gravity of the diﬁt\ribution. By this we mean that if the dets in

- \
Figure 2.1 were all of equ?.l\NElght and could e imagined as neatly arranged piles

of blocks setting on & ¥hi board (the X-axis) then this arrangement would be just

N

balanced by ho].dmg.,i.lgnife—edge under the board at the mean 1.527 ounses. The
mean has anotha\ﬁi\g‘perty: If we take each measurement minus the mean, we get 79
[ - . 1 -

d1screpancls§s(\r differences; some of these are positive and some are nszative,

but g_f_;_m.h.a:ve seen from expression (3.4}, the sigsbraic sum of all of the d4if-
rulloaliel ) gy i et —— AL, i ——— — rr————
feroncés %3 equal to zero,

We ha
ava seen that the mean of a set of measurements gives us some in-

formation abow " "
t where the "middle" or "senter of gravity" of the set of measure-

ments falls, bub it gives no information about the "soatber! for "emount of

concentration™)
n'} of the measurements. For example, the 5 measurements 14, 24.5,

25, 25.5 and 35 have the same mean ss the 5 messurements 24, 24,5, 25, 25.5 and

268, but the two seis of i X i
measursments heve widely different amounts of “scatter”.

One simple indication "
of the "scatter" of a set of measurements is the range,
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l.e., the largest value minus the smellest, In the two sets of measurements
meptioned, the rauges are 22 and 2 respestively. If we alvmys worked with fairly

small samples of the same size n {as is the case in industrial quality control,

where n = 4 and n = 5 are widely used sample sizes) then wes would find the range
very eonvenient. It is difficuls, however, to compars 4 range for one sample
size with that for a differeat sample size, For this and other reasons, the
range, in spite of its simplicity, convenience and importence, is used only in
rether restricted situations., It is very widely used in the field of \{wdustrial
gquality control. '\:>

7'\
Tne ister-quartile ranee defined in Section 2.1 is only/aseful when

the samples are large enough to establish the quartiles fai;i&“ﬁell. For n less
than about 25 the quartiles are of deubtful value, W<\§.

We cliearly need a measure of scatter which caﬁ ée used in samples of
any size and in soms sense makes use of sll the m?apbréments in the sample,
There sre several measures of scatbter that can be}uged for this purpose, and the

rost common of thess is the standard deviation,” For normal {or Gaussian) dis-

")
tributions, to be described roughly beleweayd in greater detail in Chapter 8,

the standard deviation is the "n&turalwfme%sure of scatter.

@

Many sanples of measufementé'yield cunulative polyerons on probavility

paper which are nearly straight Admes., This means that their frequency histo~

grams are fairly symmetrical %@ﬁnbell—shaped, and that:
(s} Awout 95% ofgghe measurements fall within a

{two standard deviations) of X.

distance ﬁf}é-sx
{v) ﬁboﬁ%:g%% of the measurements fall within s
ﬁiﬁt;nos of Sy {one standard deviation) of X,
o)
\{p}“about 50% of the measurements fall within a

distance of %ﬁx (0.6?455x to be more precise) of X.

For example, in the case of the zinc coabting measurements of Table 2.1,

(which did give a fairly straight cunulative polygon as you remember from
Figure 2.5) we found X = 1.527 and s, = .101. Within 2{.101) of 1,527 (i,e.,
betwsen 1,385 and 1,729) there ure 71 out of 75 measurements or 94,7% instead
of 95%., Within .101 of 1.527 (i.e., between 1,426 and 1,628) there are 52 out
of 75 measurements, or 69.5% instead of 68%, Within %{.101) of 1,587 {i.e.,

betwsen 1.460 and 1,534) theve are 35 out of 75 measuremsnmts, or 46.7% instead
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of 50%. In all cases the apgreement hetween the "actual" perventaies and the

"theoretical" percentages is good.
Those distributions of indefinitely large populations whose cuwmnulative

polygons are streight lines on probability paper are called normal or Gaussian

distributions, and are of great importance in statistics. Bince large ssmplos

of many kinds of sctual measurements givs nearly straight cumulative polygons

on probability paper, the theory of normal distributicns hes important praciicsl
consequences, In particular, we shall of'ten want to select a norma]l 'distrihu-
tion which "fits" our sample of measurements, Fitting such a distrNwticn dspends

on kmowledge of the mean (which tells where to center the distr"i’d\ztﬁon) and the

T
standard deviation {which tells how widely to spread ths dist;i.’buticn_‘ . Wa shall

show how to £it & normal distribution in Chapter 8. A ™~

"\
3,3 The Meen and Standard Deviabion for the Case oR Grégped Data.

The determination of the mean and stalge{a‘r\i‘ devistion of a sampls of data
by the formulas of Section 3,1 are likely tg b’é,\unnecessarily laboricus for a

large sample, Larpge samples of observationé;..é.re usually treated as grouped dsis.
Y

Wher computing by hand & ssmple of morg‘.’fthé.n about B0 measurements {or when

using a computing machine a sample o_{"’}n’ora Than abeout 100 measurements) should.

almost surely be treated s grouped duta,

re
3.31 An gxample, \\
To ses how we'spould proceed in caloculsting the mesn and standard de-

C . \ ¥ . . .
viatlon of a grouped 53.13tr1butlon, let us return to the dsta in Tablo 2.2 aé an

example, Tha oglilquantitiea that will be needed from Tuhle 2.2 in computing

the mean and"s dard deviaticn are tle sell midpoirts and the frejuenczies which

are rewri’g:sfe.ri' ag columns (a) and (b} of Table 3.1.

PN ama ' 3 4 5 . ’

} \}wﬂemvmbar thet in grouping the data of Table 2.1 and srrapging it io
Tabls 2Y¥2 we are arbitrarily assiguing the one memsursment falling in the cell
1.30 + ,025 the value 1.30, assiguing the &

measurements falling in the coll
1.35 + 025 the value 1

Z . N .
«#9, and so on, Thus, when the data are groupsd, we considet

that we ave + i 1
hawe the following measurements: one measurement with the wvalue 1,30, &

with the value 1.35, 6 with the valas 1,40, and so on. The mean K of the 75

measurements is obtained by applying formula (3.2}

— We have
75 X = (1.30)

+ {1.35 + 1,35 + 1,33 + 1,35 + 1-55,]
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+ (1,40 + 1,40 + 1,40 + 1,40 + 1,40 + 1,40)

..o+ (1,75 % 1,75 + 1,75)
or

75 X = 111.30) + 5(1.35) + 6(1,40) + ,.. + 3(1.75) = 114,55 .
fenoe, the mean X is
T - L5 e,
Notice that the quantity on the right-hand side of the expression for 75 X s
the sum of the entriss in column {¢} in Table 3.1. O
L\

TABLE 3,1

N

7

L ¥
U

\

X
Table Showing Calculations for Jbtaining Mean and Stapdard’ Deviation

7
of Sample from Grouped Data ~\

o

formule {3.11) (or the briefer formula {3,11a})to the grouped measurements;

{a) {v) (o) 4N (a)
Cell .
Midpoint Frequency R
Y 2
* ty ,fl i f435
1.30 1 L 1.30 1.6300
1.35 5 NS 6.75 8.1125
1,40 & 1\ 8,40 11,7600
1,45 15 o B 18,85 27.3325
1.50 8. 12,00 18,0000
1.56 x< 26,35 40,8425
1.50 Py 22,40 35,8400
1.65 N7 11,55 19,0575
1.70 " 1,70 2.8900
1,75 3 5,25 9.1875
Totel) |n =76 $(X) =114.55 s(x%) = 175,7126
£ %
S

We find the standard devimtion of the grouped measurements by applying

2 2 2
74 si s (1,300% # [ (1.35)% « (1.36)% + (1.35)" + (1.85)7 + (1.35)" ]

+

anw

+ (1.75)2 + (1.7 )2 + (1.78)% ] -

=

o
14,88,
78 (114 )

2
= 175,7125 -?15. {114,585)°,
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Hence
= (1022

and

= A0,
x

Fote that the sum of the squared terms in the expression for 71 =z
the total of the entries in column {d) of Table 3.1,

In general, there is & slight differencs betwsen X a5 calculated from
the ungfouped measurements, and X as caleulated from the grouped measurcnsents.
In the exsmplc of  the zinc coatings, the values of ¥ for the grouped agN\ungreuped

casss are ll?éEE and 114'51, respectively, These two quotients haveN\the valus
¢\

75
1,527 to three decimal places, Similarly, there are, in general '\giif‘i‘erer\cas

between the wvaluss of BX as celoulated from the grou%ed and .mg,;'oup;*d measuronents,
In the example of the ginc coatings, the values of = areo\@"(m,d and ,OLULE respect-
ively, for the grouped and ungrouped cases, These disérepanciez are due to the
grouping opefation. In the pressnt example, group%z&g\'jthe data into 10 coiiz of
length .05 cunces dess not change the valus of f,t}t"'sx to any practical exseot.

In any given problem, it 1s evident that decreésihg the zize of the cells taunds

to decrease the effect of grouping. N
3,82 The pemoral case, N

L) X
case of & general grouped f’re{Néricy distribution, we consider ths coll midpolnts

and frequencies in a gener&l grouped frequency table as given in columns {a2) and
{(b) of Table 3.2,

To find exprossions fgrfhe mean X and stendard deviastion S¢ in the

We sonatruct column (o) of valuss of f.x,, i.e., products of
11 *

call midpoints and"si‘i'equenﬂiee. Similarly, we construct a column of waiues of

£, 1%50 i,e., prod}:ts of squared uell midpoints and frequencies,

'R&é'nean X of the grouped measurements is obbained by avplyving formuia

(3.20) ‘Q :the I mdl\rldual grouped messursments, PBut wanen (3.2a) is mpplied we gel

fl terma f‘,a terms ' f terms
. ¥
n f = + '
(xl x1+..,+xl] + (x2+x2+.".+x2) .t lxoex +...xk),

or kk

2 X =
fi x1+f2 x2+“,+kak R

which may be written more compactly as
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k
{3.12) n¥ = . x

R SR
: 1™
i=1

from which X may be more explicitly written as

(3.13) X==3 rx .
n ivi
i=]
TADRLE 3.2
N
General Table for Finding Mean and Standard Deviation A
of Sample from Grouped Data f\“..\
N
N\
(a) (v) (c) \\ (@)
Cell Frequenay Y,
Midpoimnt )
X, £ f.x O f x2
i i S PPN N 171
X 3}
- ¢ B‘x. » ¢ XE
1 1 AN L 11
X, f ? :":;f b4 £ x2
2 2 Nt 272 272
. . A . .
A
- o \\6.' a L]
u e .
. .C\;’: . .
>
x; ~E fl f‘ixl flx
A\
:”&Vﬁ . E -
a \Y
\ f . .
f =% £ i
Xk fk kxk k:ﬁc
X 2 w2
Total 0 s{x) =3 f.x S(X7) = ) rx;
j=1 i=1

Thus, inr the cass ol prouped measurements we find the value of 3(xX)

for expression (3.3a) from the formula
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k
{3.14) 8(x) = ?_:111.11’

whieh is simply the sum of the entriss in column {c) of Table 3.2.

The standard deviation Sy 1s given by epplying the formulz (3.1ia)
2o the n individual grouped measurements, We have giready seen that the wvalus

of 5(X) Por grouped meagursments is piven by formule (3,14}, In the case of

S(Xz}, we similarly have

k
= . LB
3.15 gxM) =) f.x .
(819 it t A
which is given by the sum of the entries in column {d) of Teble 3. & Herce,

the formula for the standard deviation for grouped dets is g:.ven byn

s k 2 A\

2 2 i . N

{5.18) (n-1) s =(i lfixi )_ = [iﬂfixi} 7
i w\"

\l

X

% 3
w4

Txarcise 3.3. :.\\,}

1. "on" temperaturesat wnich & certain thermosdatic switch operated in 25 frials

AN

were as follows (Gramt data): O
""
55 o4 ‘5.5;':‘“ 51 53
55 55 ~.‘£’~571 51 56
55 55 m\i 5¢ - e
3
54 53\\ i 50 ' 52 56
59 \55 ‘80 56 55

Find the mean Emd ‘\}\‘19.?1013 of the "on" ftemperatures.

w4

2. Bupposs lﬁ\] pieces of enameled wars are inspscted and the nuwsber of & ariace

1f the distribution of mumber of defecte 18

it

No. of defects | Freguency
(cell midpoint)

defects on each piecs 18 recorded
N\

\ 3

x, s

o]

i

600
310

13

W LA D O
)
o
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Find the mean and variance of the nurbers of defects.

3, In & gevmination experiment, 80 rows of cabbage seed with 10 seeds per row
were incubated. The distribution of mumber of cebbage ssed which germinataed

per row was as follows (Tippett data):

o, seeds germinated Frequency
per row cf rows
{cell midpeint)

X, F SN
i 1 \

L
(4]
<0
74
F &

X 3
Find Lbo resa and variance of bthe nutbers of(Pe¥ls germinating per row.
K -
4. A pair of chsap plastic dice wersa };lzlfo{-}a 100 times and the distribution of
the total number of dots obtained ms:}i's follows:

o

lio. of dots p,a;f‘-}ﬁ]row Frequency
{cell m}é}s\oint)
ol £,
N4 i
\\ 2 0
A4 3 7
8 2 9
5 19
~O 8 18
\"\; - 7 13
8 1
9 4
10 6
13 11
12 4

Find the mean and variance of the numbers of dots obtained.
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3.4 Simplified Computabion of Mean end gtandard Daviaticn,

For computational purposes it often saves 8 gresat deal of labor to
caloulate the mean and standard deviation by changing the meesurements o a4 new
scale with a new origin or to & new scale with a new unit and a new crigin,

First, we shall consider the simplest case: the use of a working origin.

.41 Effsct of adding a conatant.

Suppose we convert the X measurements Xl’ XE’ aeny Xn to new meagure-

ments Yl, YZ’ eans Yn by adding any constant a, i.e., by using the ﬂakllowing
relation between any X value and its corresponding Y value: N o
AN
Y. =X, ¢+ g, 'S\

J J s W
The constant a may be either positive or negative., Let us Cymsider the relation
betwesn the mean T of the Y measuremerts snd the me&n.,i\éf the X measurements.

¥ie have

n ha] ) )
S(T) = > (X, +a) =) %I+ a:g\\ﬂ:{) *n g,
i1 Y EERRRY N

4\
or 7

)..’ "
8(7) = ng‘j W o oa,
Dividing by n and using (3.3) we fidd™

(8.17) LF =T+ a.

+8 )
Hence, the effect of addimf\a constant a teo sach of a set of X measurements is
Y

1o add & to the mean of Yhe messurements. This sbatement also holds for grouped
measurements, NS/

Next’}{!é;}é‘é that for any measurement
."\\ Y_-?:(X,+aj-—{f+a)
'\ J N
Ny =
'"\} w 2 = Kj ~ X »
which me